Assessing The Quality Of Opinion Retrieval Systems.

G. Amati1, G. Amodeo2, V. Capozio3, C. Gaibisso4, G. Gambosi3

1Ugo Bordoni Foundation, Rome, Italy
2Dept. of Computer Science, University of L’Aquila, L’Aquila, Italy
3Dept. of Mathematics, University of Rome “Tor Vergata”, Rome, Italy
4IASI-CNR, Rome, Italy

The First International Workshop on Opinion Mining for Business Intelligence
August 31, 2010
Objectives of the work

- Topical Opinion Retrieval (TOR) is evaluated by classical IR evaluation measures, i.e. Mean Average Precision (MAP) or Precision at 10 (P@10).
- The effectiveness of the topical-only retrieval (effectiveness of the baseline) boosts the TOR performance.
- How can we assess the opinion-only classification accuracy (or precision, etc.)? How can we split the contribution of the opinion component from retrieval?

Methodological Framework

- We build artificial opinion-only classifiers from relevance and opinion data at different rates of opinion accuracy and precision.
- Then we study the effect on MAP of the TOR system with such classifiers.
- We are able to assess the opinion-only component quality of a given TOR system by comparing it with such artificial TOR systems.
Objectives of the work

- Topical Opinion Retrieval (TOR) is evaluated by classical IR evaluation measures, i.e. Mean Average Precision (MAP) or Precision at 10 (P@10).
- The effectiveness of the topical-only retrieval (effectiveness of the baseline) boosts the TOR performance.
- How can we assess the opinion-only classification accuracy (or precision, etc.)? How can we split the contribution of the opinion component from retrieval?

Methodological Framework

- We build artificial opinion-only classifiers from relevance and opinion data at different rates of opinion accuracy and precision.
- Then we study the effect on MAP of the TOR system with such classifiers.
- We are able to assess the opinion-only component quality of a given TOR system by comparing it with such artificial TOR systems.
Objectives of the work

- Topical Opinion Retrieval (TOR) is evaluated by classical IR evaluation measures, i.e. Mean Average Precision (MAP) or Precision at 10 (P@10).
- The effectiveness of the topical-only retrieval (effectiveness of the baseline) boosts the TOR performance.
- How can we assess the opinion-only classification accuracy (or precision, etc.)? How can we split the contribution of the opinion component from retrieval?

Methodological Framework

- We build artificial opinion-only classifiers from relevance and opinion data at different rates of opinion accuracy and precision.
- Then we study the effect on MAP of the TOR system with such classifiers.
- We are able to assess the opinion-only component quality of a given TOR system by comparing it with such artificial TOR systems.

Results & Conclusions
The topical opinion retrieval (TOR)

TOR systems have two phases:

Topic Retrieval : Ranking documents by content-only;

Opinion Mining : Filtering or re-ranking these documents by opinion content.

Filtering or re-ranking relevant documents by opinions always hurts the initial performance of topical retrieval (with the actual TREC submitted runs). Actually MAP always increases with a perfect opinion classifier!

To assess the effectiveness of an opinion mining strategy should be sufficient to observe MAP of relevance and opinion ($MAP_{R,O}$) with respect to MAP of the baseline.

Unfortunately different baselines provide different increment rates for the same technique of opinion mining.
The aim of our work is to introduce a methodological evaluation framework to:

- provide a best achievable $MAP_{R,O}$ for a given baseline;
- assess opinion mining effectiveness from the overall topical opinion retrieval performance;
- study best filtering strategies on top of topical retrieval.
Artificial opinion classifiers

Let A be a complete set of assessments (by topic-relevance and opinion-only) for the collection. A binary opinion classifier is a function that maps documents in C_O, the category of opinionated documents, and $C_{\overline{O}}$, the category of non-opinionated documents.

\[
\begin{array}{c|cc}
 & \mathcal{O} & \overline{\mathcal{O}} \\
\hline
C_O & K_O \cdot |\mathcal{O}| & (1 - K_{\overline{O}}) \cdot |\overline{\mathcal{O}}| \\
C_{\overline{O}} & (1 - K_O) \cdot |\mathcal{O}| & K_{\overline{O}} \cdot |\overline{\mathcal{O}}| \\
\end{array}
\]

We define a class of artificial binary classifiers of opinion, $C_{K_O,K_{\overline{O}}}^A(\cdot)$, where

- K_O is the detection rate of true positive documents according to A;
- $K_{\overline{O}}$ is the detection rate of true negative documents according to A;
- $(1 - K_O) \cdot |\mathcal{O}|$ is the number of type I errors;
- $(1 - K_{\overline{O}}) \cdot |\overline{\mathcal{O}}|$ is the number of type II errors;
How to use the framework

Given a topical opinion retrieval run and its $MAP_R, O = r$ value, we obtain the set of all K_O and $K_{\overline{O}}$ values, such that the artificial opinion classifiers $C^{A}_{K_O, K_{\overline{O}}}(\cdot)$ achieve r. We then compute accuracy, precision, recall and F-score of the opinion-only component as follows:

- **Acc** = \[
\frac{K_O \cdot |O| + K_{\overline{O}} \cdot |\overline{O}|}{|O| + |\overline{O}|}
\]
- **Prec** = \[
\frac{K_O \cdot |O|}{K_O \cdot |O| + (1 - K_{\overline{O}}) \cdot |\overline{O}|}
\]
- **Rec** = K_O
- **F-score** = $2 \cdot \frac{\text{Prec} \cdot \text{Rec}}{\text{Prec} + \text{Rec}}$ ($\beta = 1$)

Any approach must improve the performance of the random classifier $C^{A}_{P(O), 1 - P(O)}(\cdot)$, where $P(O) = \frac{|O|}{|C|}$ is the a priori distribution of opinionated documents in the collection.
The Blog2008 consists of 3.2 millions of web pages containing blog posts, a test suite of 150 topics and a set of relevance/opinion assessment (QRELs).

Topics and QRELs are provided by the NIST.

The NIST also provided the best 5 runs, named baselines, produced by some participants. Each baseline is made by 150 runs, one for each topic.
Unfortunately the 150 topics are a sample of the topics treated by the collection and the largest part of documents are not assessed with respect to their content of opinion.

To fill the lack of information on the opinion expressed by documents we need to “complete” the data.

To complete the data we assume that each document is relevant for some topic t. $Qrel_t$ is completed assigning each non relevant document for t to the set of non relevant and opinionated documents with probability

$$P(O_{\overline{R}_t}) = \frac{|O_R - O_{\overline{R}_t}|}{|\overline{R} - \overline{R}_t|}.$$

Analogously can be defined $P(O_{\overline{R}_t})$ as:

$$P(O_{\overline{R}_t}) = \frac{|\overline{O}_R - \overline{O}_{\overline{R}_t}|}{|\overline{R} - \overline{R}_t|} = 1 - P(O_{\overline{R}_t}) .$$
The Monte Carlo approach

We use Monte Carlo approach to generate randomly different opinion assessments for not relevant data in order to complete data.

We iterate previous step to generate randomly different values for precision, recall, F-score or accuracy and average them.

Much less than 20 cycles are enough to obtain stable results.
How to use the framework to predict opinion performance

Setting $K_O = K_{\overline{O}} = 1$ the framework works as an oracle and provides a best achievable $MAP_{R,O}$ for each baseline.

<table>
<thead>
<tr>
<th></th>
<th>MAP_R</th>
<th>$MAP_{R,O}$</th>
<th>$MAP^*_{R,O}$</th>
<th>$\Delta%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1</td>
<td>0.3540</td>
<td>0.2639</td>
<td>0.4999</td>
<td>89%</td>
</tr>
<tr>
<td>BL2</td>
<td>0.3382</td>
<td>0.2657</td>
<td>0.4737</td>
<td>78%</td>
</tr>
<tr>
<td>BL3</td>
<td>0.4079</td>
<td>0.3201</td>
<td>0.5580</td>
<td>74%</td>
</tr>
<tr>
<td>BL4</td>
<td>0.4776</td>
<td>0.3543</td>
<td>0.6294</td>
<td>78%</td>
</tr>
<tr>
<td>BL5</td>
<td>0.4247</td>
<td>0.3147</td>
<td>0.5839</td>
<td>86%</td>
</tr>
</tbody>
</table>

Mean Average Precision of relevance MAP_R, relevance and opinion $MAP_{R,O}$, optimal relevance and opinion $MAP^*_{R,O}$, variation $\Delta\%$ between $MAP^*_{R,O}$ and $MAP_{R,O}$.
Mean percentage variations of $MAP_{R,O}$ filtering the baselines through $C_{K_O,K_{\overline{O}}}^{Qrels^*}(\cdot)$.

\[
\begin{array}{c|ccccccc}
K_{\overline{O}} & K_O & 1.0 & 0.9 & 0.8 & 0.7 & 0.6 & 0.5 \\
\hline
1.0 & 81\% & 63\% & 45\% & 27\% & 10\% & -9\% \\
0.9 & 63\% & 46\% & 28\% & 11\% & -7\% & -24\% \\
0.8 & 50\% & 33\% & 17\% & 0\% & -17\% & -33\% \\
0.7 & 40\% & 24\% & 7\% & -8\% & -24\% & -39\% \\
0.6 & 32\% & 16\% & 0\% & -15\% & -30\% & -44\% \\
0.5 & 24\% & 9\% & -6\% & -20\% & -35\% & -48\%
\end{array}
\]

K_O contributes to improve $MAP_{R,O}$ more than $K_{\overline{O}}$. This is evident comparing the values of $MAP_{R,O}$ reported by the column and the row corresponding to $K_O = K_{\overline{O}} = 0.7$.
Use the framework to compare the best three TREC approaches

The best three approaches to the TREC Blog Track 2008 achieve, on the five baselines, the following performance:

1. $MAP_{R,O} = 0.3614$, percentage improvements of $+12\%$;
2. $MAP_{R,O} = 0.3565$, percentage improvements of $+10\%$;
3. $MAP_{R,O} = 0.3412$, percentage improvements of $+5\%$;

These evidently different improvements do not significantly differ in terms of opinion mining effectiveness.
Conclusion

- Our evaluation framework assesses the effectiveness of opinion mining techniques.
- This framework, makes it possible to provide a best achievable MAP_R,O for a given baseline.
- We determine the minimum values of accuracy, precision, recall and F-score that make it possible to improve a baseline. These values show that it is an hard task to improve a baseline by filtering its documents according to the opinion they express.
- We show how to compare different opinion mining techniques and to understand if they really improves on the state of the art.
Thanks!